Changes in Hyaluronan Metabolism and RHAMM Receptor Expression Accompany Formation of Complicated Carotid Lesions and May be Pro-Angiogenic Mediators of Intimal Neovessel Growth

نویسندگان

  • Jerzy Krupinski
  • Priya Ethirajan
  • M. Angels Font
  • Marta Miguel Turu
  • John Gaffney
  • Pat Kumar
  • Mark Slevin
چکیده

Previous studies have shown that changes in expression of the glycosaminoglycan, hyaluronan (HA) were associated with erosion in areas of post-mortem coronary artery liable to rupture. Angiogenesis is an important feature of ulcerating haemorrhagic plaques prone to rupture. HA is a glycosaminoglycan known to possess potent angiogenic properties on metabolism to oligosaccharides of HA (o-HA) in the presence of hyaluronidase (HYAL) enzymes. In this study, we have examined HA receptor and HYAL enzyme expression in a series of carotid artery specimens used as vascular transplants and exhibiting various stages of atherosclerotic lesions as determined by anatomo-pathology. Our results demonstrated dramatically increased expression of HYAL-1 in regions of inflammation associated with complicated plaques. Receptor for HA-mediated motility (RHAMM), which is known to be important in transducing angiogenic signals in vascular endothelium, was strongly expressed on intimal blood vessels from complicated lesions but almost absent from other regions including adventitial vessels. Metabolism of HA, together with up-regulation of RHAMM in complicated plaque lesions might be partly responsible for over-production of leaky neovessels and predisposition to plaque rupture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling the angiogenic switch in developing atherosclerotic plaques: Possible targets for therapeutic intervention

Plaque angiogenesis may have an important role in the development of atherosclerosis. Vasa vasorum angiogenesis and medial infiltration provides nutrients to the developing and expanding intima and therefore, may prevent cellular death and contribute to plaque growth and stabilization in early lesions. However in more advanced plaques, inflammatory cell infiltration, and concomitant production ...

متن کامل

The Roles of Hyaluronan/RHAMM/CD44 and Their Respective Interactions along the Insidious Pathways of Fibrosarcoma Progression

Fibrosarcomas are rare malignant mesenchymal tumors originating from fibroblasts. Importantly, fibrosarcoma cells were shown to have a high content and turnover of extracellular matrix (ECM) components including hyaluronan (HA), proteoglycans, collagens, fibronectin, and laminin. ECMs are complicated structures that surround and support cells within tissues. During cancer progression, significa...

متن کامل

Hyaluronan Synthases and RHAMM as Synergistic Mediators of Malignancy in B Lineage Cancers

Hyaluronan synthases (HASs), enzymes that synthesize hyaluronan (HA), are overexpressed, and in the case of HAS1, undergo aberrant splicing in some B lineage malignancies, including multiple myeloma (MM) and Waldenstrom’s macroglobulinemia (WM). RHAMM, the receptor for HA-mediated motility, is overexpressed in malignant B lineage cells from WM, in nonHodgkin’s lymphoma (NHL), B cell chronic lym...

متن کامل

Expression and function of a receptor for hyaluronan-mediated motility on normal and malignant B lymphocytes.

Migration through extracellular matrix is fundamental to malignant invasion. A receptor for hyaluronan-mediated motility (RHAMM) has previously been shown to play a fundamental role in locomotion of ras-transformed cells as well as functioning in signal transduction. Expression of RHAMM was characterized on B lymphocytes from normal and malignant lymphoid tissues using multiparameter phenotypic...

متن کامل

Soluble hyaluronan receptor RHAMM induces mitotic arrest by suppressing Cdc2 and cyclin B1 expression

The hyaluronan (HA) receptor RHAMM is an important regulator of cell growth. Overexpression of RHAMM is transforming and is required for H-ras transformation. The molecular mechanism underlying growth control by RHAMM and other extracellular matrix receptors remains largely unknown. We report that soluble RHAMM induces G2/M arrest by suppressing the expression of Cdc2/Cyclin B1, a protein kinas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2007